Удовольствие от x: Удовольствие от Х читать онлайн

Содержание

Удовольствие от Х читать онлайн

Эту книгу хорошо дополняют:

Кванты

Скотт Паттерсон

Brainiac

Кен Дженнингс

Moneyball

Майкл Льюис

Гибкое сознание

Кэрол Дуэк

Физика фондового рынка

Джеймс Уэзеролл

Steven Strogatz

The Joy of X

A Guided Tour of Math, from One to Infinity

Стивен Строгац

Удовольствие от Х

Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире

Информация от издательства

На русском языке публикуется впервые

Строгац, П.

ISBN 978-500057-008-1

Эта книга способна в корне изменить ваше отношение к математике. Она состоит из коротких глав, в каждой из которых вы откроете для себя что-то новое. Вы узнаете насколько полезны числа для изучения окружающего мира, поймете, в чем прелесть геометрии, познакомитесь с изяществом интегральных исчислений, убедитесь в важности статистики и соприкоснетесь с бесконечностью. Автор объясняет фундаментальные математические идеи просто и элегантно, приводя блистательные примеры, понятные каждому.

Все права защищены.

Никакая часть данной книги не может быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских прав.

Правовую поддержку издательства обеспечивает юридическая фирма «Вегас-Лекс»

© Steven Strogatz, 2012 All rights reserved

Предисловие

У меня есть друг, который, несмотря на свое ремесло (он — художник), страстно увлечен наукой. Всякий раз, когда мы собираемся вместе, он с энтузиазмом рассуждает о последних достижениях в области психологии или квантовой механики. Но стоит нам заговорить о математике — и он чувствует дрожь в коленках, что его сильно огорчает. Он жалуется, что эти странные математические символы не только не поддаются его пониманию, но порой он даже не знает, как их произносить.

На самом деле причина его неприятия математики гораздо глубже. Он никак не возьмет в толк, чем математики вообще занимаются и что имеют в виду, когда говорят, что данное доказательство изящно. Иногда мы шутим, что мне нужно просто сесть и начать его учить с самых азов, буквально с 1 + 1= 2, и углубиться в математику настолько, насколько он сможет.

И хотя эта затея кажется безумной, именно ее я и попытаюсь осуществить в данной книге. Я проведу вас по всем основным разделам науки, от арифметики до высшей математики, чтобы те, кто хотел получить второй шанс, наконец смогли им воспользоваться. И на сей раз вам не придется садиться за парту. Эта книга не сделает вас экспертом в математике. Зато поможет разобраться в том, что изучает данная дисциплина и почему она так увлекательна для тех, кто это понял.

Мы узнаем, как слэм-данки[1] Майкла Джордана могут помочь объяснить азы исчисления. Я покажу вам простой и потрясающий способ, как понять основополагающую теорему евклидовой геометрии — теорему Пифагора. Мы постараемся добраться до самой сути некоторых тайн жизни, больших и малых: убивал ли свою жену Джей Симпсон[2]; как перекладывать матрас, чтобы он прослужил максимально долго; сколько партнеров нужно сменить перед тем, как сыграть свадьбу, — и увидим, почему одни бесконечности больше, чем другие.

Математика повсюду, надо только научиться ее узнавать. Можно разглядеть синусоиду на спине зебры, услышать отголоски теорем Евклида в Декларации о независимости; да что там говорить, даже в сухих отчетах, предшествовавших Первой мировой войне, присутствуют отрицательные числа. Также можно увидеть, как на нашу сегодняшнюю жизнь влияют новые направления математики, например, когда мы ищем рестораны с помощью компьютера или пытаемся хотя бы понять, а еще лучше — пережить пугающие колебания фондового рынка.

По случайному, хотя и уместному для книги о числах совпадению, идея ее написания родилась в день, когда мне исполнилось пятьдесят.

. Дэвид Шипли, автор нескольких обзорных статей в New York Times, как раз пригласил меня (не зная о моем полувековом юбилее) на обед. Он спросил, не хочу ли я написать серию статей о математике для его читателей. Мне очень понравилась эта идея, и я был готов поделиться радостью от занятий математикой не только с моим любознательным другом-художником, но и с более широкой аудиторией.

Серия из 15 статей под общим названием «Основы математики» появилась в сети в конце января 2010 года. В ответ на их публикацию посыпались письма и комментарии от читателей всех возрастов, среди которых было много студентов и преподавателей. Встречались и просто любознательные люди, по тем или иным причинам «сбившиеся с пути» постижения математической науки; теперь же они почувствовали, что упустили что-то стоящее, и хотели бы попробовать еще раз. Особую радость мне доставляли благодарности от родителей за то, что они с моей помощью смогли объяснить математику своим детям, да и сами стали лучше ее понимать. Казалось, что даже мои коллеги и товарищи, горячие поклонники этой науки, получали удовольствие от чтения статей, за исключением тех моментов, когда они наперебой предлагали всевозможные рекомендации по улучшению моего детища.

Несмотря на расхожее мнение, в обществе наблюдается явный интерес к математике, хотя этому феномену и уделяют мало внимания. Мы только и слышим, что о страхе перед математикой, и тем не менее, многие с радостью бы попробовали разобраться в ней лучше. И стоит этому случиться — их уже будет трудно оторвать.

Данная книга познакомит вас с самыми сложными и передовыми идеями из мира математики. Главы небольшие, легко читаются и особо не зависят друг от друга. Среди них есть и вошедшие в ту, первую серию статей в New York Times. Так что как только почувствуете легкий математический голод, не раздумывая беритесь за следующую главу. Если захотите подробнее разобраться в заинтересовавшем вас вопросе, то в конце книги есть примечания с дополнительной информацией и рекомендациями, что еще об этом можно почитать.

Для удобства читателей, которые предпочитают пошаговый подход, я разбил материал на шесть частей в соответствии с традиционным порядком изучения тем.

Часть I «Числа» начинает наше путешествие с арифметики в детском саду и начальной школе. В ней показано, насколько полезными бывают числа и как они магически эффективны при описании окружающего мира.

Часть II «Соотношения» переводит внимание с самих чисел на соотношения между ними. Эти идеи лежат в основе алгебры и являются первыми инструментами для описания того, как одно влияет на другое, проявляя причинно-следственную связь самых разных вещей: спроса и предложения, стимула и реакции — словом, всех видов отношений, которые делают мир столь многогранным и богатым.

Часть III «Фигуры» повествует не о числах и символах, а о фигурах и пространстве — вотчине геометрии и тригонометрии. Эти темы, наряду с описанием всех обозримых объектов посредством форм, с помощью логических рассуждений и доказательств поднимают математику на новый уровень точности.

В части IV «Время перемен» мы рассмотрим исчисления — самое впечатляющее и многогранное направление математики …

Удовольствие от X (fb2) | Флибуста

Стивен Строгац     издание 2014 г.  (следить)   fb2 info
Добавлена: 08.01.2015

Аннотация

Эта книга способна в корне изменить ваше отношение к математике. Она состоит из коротких глав, в каждой из которых вы откроете для себя что-то новое. Вы узнаете насколько полезны числа для изучения окружающего мира, поймете, в чем прелесть геометрии, познакомитесь с изяществом интегральных исчислений, убедитесь в важности статистики и соприкоснетесь с бесконечностью. Автор объясняет фундаментальные математические идеи просто и элегантно, приводя блистательные примеры, понятные каждому.
На русском языке публикуется впервые.



ProRun в 11:35 (+02:00) / 31-05-2016, Оценка: отлично!
«если бы бесконечность была нечетным числом, то при умножении на себя она стала бы четным числом»
Специально посмотрел оригинал, там говорится «two times infinity», то есть «дважды бесконечность», или «2 * бесконечность», что и дало бы «четную бесконечность» Простая ошибка перевода.

«бред, ошибка на ошибке»
Читайте в оригинале, Федя


fedya22 в 10:41 (+01:00) / 08-01-2015, Оценка: нечитаемо
бред, ошибка на ошибке
типа:
«если бы бесконечность была нечетным числом, то при умножении на себя она стала бы четным числом»
видимо имеется в виду перенос свойств обычных чисел на бесконечные, но для обычных чисел неверно, что умножение нечетного на нечетное дает четное
7*7=49… бред, короче… математикам, физикам, инженерам, вообще, кто хочет понять математику — не читать… потом тяжело будет исправлять ошибки

и еще, про отель Гильберта, тоже неверно
автор не понимает математики

единицу поставил


xupypr в 20:01 (+02:00) / 06-05-2014, Оценка: отлично!
Огромное спасибо! Это то что я давно искал.
Просто и великолепно.
karl-ieronim в 14:58 (+02:00) / 06-05-2014, Оценка: отлично!
если книги Перельмана для детей лет до 15(хотя не факт что не понравятся людям старше) то эта книга для людей постарше.
ну мне так показалось.
в целом — ещё читаю и ловлю кайф от стиля изложения и от самого предмета. люблю всё логичное. рекомендую!

отдельное спасибо приготовившему файл и тому кто выложил.



Оценки: 7, от 5 до 1, среднее 3.6

Читатели, читавшие эту книгу, также читали:

Удовольствие от Х: Новая нормальность. Глава из книги Стивена Строгаца

где x — население города, у — количество городов, имеющих такой размер, с — константа, а показатель степени a (показатель степенной зависимости) определяет отрицательный наклон прямой линии.

Степенные распределения имеют некоторые нелогичные, с точки зрения традиционной статистики, свойства. Например, в отличие от нормального распределения, их моды, медианы и средние значения не совпадают из-за скошенной асимметричной формы L-образных кривых.

Президент Буш извлек из этого немалую пользу, заявив в 2003 году, что сокращение налогов позволило каждой семье сэкономить в среднем 1586 долларов. Хотя математически это верно, здесь он к своей выгоде взял за основу среднее значение вычета, под которым скрывались огромные вычеты в сотни тысяч долларов, полученные 0,1% богатейшего населения страны. Известно, что «хвост» в правой части распределения дохода следует степенной зависимости, и в подобной ситуации использование средней величины вводит в заблуждение, поскольку она далека от своего реального значения. В действительности большинству семей вернули менее 650 долларов. В данном распределении медиана значительно меньше, чем среднее значение.

Этот пример демонстрирует важнейшее свойство распределений степенной зависимости: они имеют «тяжелые хвосты» по сравнению по крайней мере с маленькими «жидкими хвостиками» нормального распределения. Подобные большие хвосты хотя и редкость, но встречаются чаще в распределениях данных, чем обычные колоколообразные кривые.

В «черный понедельник», 19 октября 1987 года, промышленный индекс Доу-Джонса упал на 22%. По сравнению с обычным уровнем нестабильности на фондовом рынке это падение составило более двадцати стандартных отклонений. Согласно традиционной статистике (в которой используется нормальное распределение), подобное событие практически невозможно: его вероятность составляет менее чем один случай на 100 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 (10 в 50 степени). Однако это произошло — поскольку колебания цен на фондовом рынке не соответствовали нормальному распределению.

Для их описания лучше подходят распределения с «тяжелым хвостом». Подобное происходит с землетрясениями, пожарами и наводнениями, что усложняет страховым компаниям задачу управления рисками.

Такая же математическая модель описывает число погибших в результате войн и террористических атак, а также другие, гораздо более мирные вещи, такие как количество слов в романе или число сексуальных партнеров у человека.

Хотя прилагательные, используемые для описания длинных хвостов, выставляют их в не слишком выгодном свете, «хвостатые» распределения гордо несут свои хвосты. Жирный, тяжелый и длинный? Да, это так. Но в таком случае покажите, какой нормальный?

Подписывайтесь на Indicator.Ru в соцсетях: Facebook, ВКонтакте, Twitter, Telegram.

Стивен Строгац. Удовольствие от х

Эта книга состоит из коротких глав, в каждой из которых вы откроете для себя что-то новое. Вы узнаете насколько полезны числа для изучения окружающего мира, поймете, в чем прелесть геометрии, познакомитесь с изяществом интегральных исчислений, убедитесь в важности статистики и соприкоснетесь с бесконечностью. Автор объясняет фундаментальные математические идеи просто и элегантно, приводя блистательные примеры, понятные каждому.

Стивен Строгац. Удовольствие от х. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире. — М.: Манн, Иванов и Фербер, 2014. — 304 с.

Строгац. Удовольствие от х. Обложка

Скачать краткий конспект в формате Word или pdf

1. Основы чисел: сложение рыбок

Как появились числа? Изобрели ли их люди? Или лишь обнаружили? Число – это абстракция.  Математика всегда включает в себя как изобретение, так и открытие: мы изобретаем концепции, но открываем их последствия.

2. Каменная арифметика

Как и любое явление в жизни, арифметика имеет две стороны: формальную и занимательную (или игровую). В эссе «Плач математика» Пол Локхарт предлагает изучать числа на более конкретных, чем обычно, примерах: он просит, чтобы мы представили их в виде некоторого количества камней. Например, если сложить все возможные последовательности нечетных чисел, начиная с 1:

1 + 3 = 4
1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16
1 + 3 + 5 + 7 + 9 = 25

то суммы всегда оказываются идеальными квадратами. Правильно располагая камешки, мы можем сделать эту связь очевидной. Нечетные числа можно представить в виде равносторонних уголков, последовательное наложение которых друг на друга образует квадрат (рис. 1).

Рис. 1. Наглядное доказательство того, что сумма последовательных нечетных чисел всегда дает квадрат количества слагаемых

Рис. 1. Доказательство того, что сумма нечетных чисел дает квадрат количества слагаемых

Представление числа в виде группы камешков может показаться необычным, но на самом деле так же старо, как и сама математика. Слово «вычислять» (англ. calculate) отражает это наследие и происходит от латинского calculus, означающего «галька», которую римляне использовали при выполнении вычислений. Чтобы получать удовольствие от манипуляций с числами, не обязательно быть Эйнштейном (что по-немецки означает «один камень»), но, возможно, умение жонглировать камешками облегчит вам это занятие.

5. Деление и его проблемы

Через все повествование о числовых основах математики красной нитью проходит одна идея. Речь идет о создании (или поиске) все более универсальных чисел. Нам достаточно натуральных чисел 1, 2, 3 и т.д., если нужно что-то сосчитать, сложить или перемножить. Но как только мы переходим к вычитанию, мы вынуждены создать новый вид числа — ноль, а также отрицательные числа. Эта расширенная вселенная чисел, называемых целыми, так же замкнута, как и натуральные числа, но она более мощная, поскольку охватывает еще и результаты операции вычитания. Математики говорят, что множество натуральных чисел замкнуто относительно операций сложения и умножения, то есть результаты этих операций, совершенные над натуральными числами, тоже будут натуральными числами. Аналогично множество всех целых чисел замкнуто относительно операций сложения, вычитания и умножения.

Новый кризис наступает при попытке выполнить математическую операцию деления. Деление целого числа без остатка не всегда возможно… если мы не расширим вселенную чисел еще раз, своевременно изобретя дроби. Дроби — это отношение целых чисел, следовательно, их математическое название — рациональные числа.

Рассмотрим, например, такую десятичную дробь: 0,12122122212222… Последовательность подобрана так, чтобы ряд двоек в каждом периоде по мере продвижения вправо был длиннее. Такую дробь невозможно преобразовать в обыкновенную, то есть в отношение двух целых чисел. Обыкновенные дроби всегда преобразуются в конечные или периодические десятичные дроби. Например, 5/6 = 0,8333… 1/7 = 0,142857142857… 1/3 = 0,3333… Поэтому число 0,12122122212222… иррационально.

6. Твердая позиция

Почти во всех системах счисления укоренились особенности анатомического строения человека. Этот анатомический факт отражается в примитивной системе подсчета, например, число 17 записывается в виде:

Рис. 2. Основанная на анатомии запись числа 17

Рис. 2. Основанная на анатомии запись числа 17

Римские цифры лишь немного сложнее, чем счет на пальцах. Вы можете определить след счета на пальцах в способе написания римлянами чисел 2 и 3 как II и III. Косая черта находит отражение в форме римского числа 5 как V. Вавилоняне не были настолько привязаны к своим пальцам. Их система счисления основывалась на числе 60, в чем отразился их безупречный вкус, так как 60 — исключительно приятное число. Его красота внутренняя и не имеет ничего общего с человеческой анатомией. Шестьдесят — это наименьшее число, которое можно разделить нацело (без остатка) на 1, 2, 3, 4, 5 и 6. И это только начало (есть еще делители 10, 12, 15, 20 и 30). Из-за своей уникальной делимости число 60 куда более приемлемо, чем 10, для любого вида расчетов или измерений, которые представляют собой деление на равные части. Когда мы делим час на 60 минут, или минуту на 60 секунд, или полный круг на 360 градусов, то питаемся идеями мудрецов Древнего Вавилона.

Но самое большое наследие вавилонян — это идея, которая сегодня нам настолько привычна, что мало кто из нас может оценить всю ее тонкость и гениальность – использование нуля. Основное новшество в том, что, хотя эта система основана на числе 10, для него не зарезервировано никакого отдельного символа. Десять — это позиция цифр 1 и 0, их расположение, а не отдельный символ. Такая система представления чисел называется позиционной системой счисления. Здесь четко виден контраст между элегантной позиционной системой и более грубым подходом, используемым в римских цифрах. Вы хотите число десять? У нас есть 10. Это римское X. Аналогично получаем 100 (римское С) и 1000 (римское M). К сожалению, римские цифры скрипели и стонали, когда сталкивались с чем-то большим, чем несколько тысяч.

Учитывая тот факт, что выбор числа 10 для системы счисления имеет анатомическую, а не логическую основу, естественным было бы спросить, а нет ли более эффективных систем счисления с другими основаниями? Веские аргументы можно представить в пользу системы счисления с основанием 2 — теперь уже повсеместно распространенной двоичной системы, используемой в компьютерах и всех электронных (цифровых) устройствах.

Конечно, при записи числа в двоичной системе счисления мы не используем цифру 2, так же, как и «цифру» 10 при записи чисел в десятичной системе счисления. В двоичной системе 2 записывается как 10 (один и ноль), а это означает одну двойку и ноль единиц. Аналогично этому 4 можно записать как 100 (одна четверка, ноль двоек и ноль единиц), а 8 — как 1000.

7. Получая радость от х

Алгебра сводится лишь к двум вещам: нахождению решений x и работе с уравнениями. Такое определение двух основных функций алгебры не считается общепринятым (оно придумано мной и, как мне кажется, довольно правдиво). Один вид формул называется тождеством. Когда на уроках алгебры вы раскладывали на множители или перемножали многочлены, вы работали с тождествами. Можете использовать их и теперь, чтобы произвести впечатление на друзей дешевыми трюками с числами. Вот один, который поразил физика Ричарда Фейнмана, хотя он сам неплохо считал устно.

Работая в Лос-Аламосе, – пишет Фейнман, – я убедился, что Ганс Бете превосходно считает. Как-то раз мы подставляли числа в формулу и добрались до квадрата 48, я уже было потянулся за калькулятором, и тут Ганс сказал:

— Это будет равняться 2300.

Я стал нажимать кнопки, а он продолжил:

— Если вам нужен точный ответ, то 2304.

Калькулятор тоже выдал 2304.

— Ну и дела! Это впечатляет! — воскликнул я.

— Разве вы не знаете, как возвести в квадрат числа, порядка 50? — удивился он. — Возводите в квадрат 50 — равно 2500 — и вычитаете 100 раз разность между 50 и вашим числом (в данном случае это 2), так у вас выйдет 2300. Если хотите иметь точное значение, то к этому числу прибавьте квадрат разности. Выйдет 2304. Трюк Бете основан на тождестве (50 + х)2 = 2500 + 100x + х2. Он запомнил его и применил при х = –2, так как 48 = 50 – 2. Для интуитивного доказательства этой формулы представьте себе квадратный кусочек ковра со стороной 50 + х (рис. 3).

Рис. 3. Быстрое вычисление квадрата числа близкого к 50

Рис. 3. Быстрое вычисление квадрата числа близкого к 50

Его площадь, равная (50 + х) в квадрате, и есть наше искомое. Однако на диаграмме видно, что эта область состоит из квадрата 50 х 50 (в формуле это равно 2500), двух прямоугольников размером 50, умноженное на x, (площадь каждого по 50x; всего 100х), и, наконец, x, умноженное на x, что равно площади х в квадрате.

8. В поиске своих корней

Как вычитание больших чисел из меньших породило отрицательные числа (см. раздел 3), а деление породило дроби (см. раздел 5), необходимость извлекать квадратные корни в конечном итоге вынудила вновь расширить вселенную чисел. Исторически так сложилось, что этот шаг был самым болезненным. Квадратный корень из –1 до сих пор носит унизительное название «мнимый». Этот новый вид чисел (или, если вы предпочитаете быть агностиками, называйте их символами, а не числами) определяется таким свойством, что i2 = –1.

То, что i нельзя найти на числовой оси, действительно правда. В этом отношении i гораздо более необычно, чем ноль, отрицательные числа, дроби и даже иррациональные числа, но, как ни странно, у всех мнимых чисел есть место на числовой оси. И при достаточном воображении наш ум может его отыскать и для i тоже. Оно «живет» на собственной мнимой оси, расположенной под прямым углом к основной. И, наложив мнимую ось на ось реальную числовую, вы создадите 2D-пространство, то есть двумерную плоскость, где обитают воображаемые числа. Это комплексные числа. Но их комплексность означает не сложность, а то, что два типа чисел, действительных и мнимых, скреплены вместе и образуют сложное, гибридное число, например, 2+3i (рис. 4).

Рис. 4. Отображение комплексного числа 2+3i на числовой плоскости

Рис. 4. Отображение комплексного числа 2+3i на числовой плоскости

Вы можете оценить полезность комплексных чисел (то есть почувствовать их правдоподобие), если знаете, как их визуализировать. Ключом к визуализации станет понимание того, что такое умножение на i. Предположим, мы умножаем произвольное положительное число, скажем 3, на i. Результатом будет мнимое число 3i (рис. 5).

Рис. 5. Результат умножения числа 3 на i

Рис. 5. Результат умножения числа 3 на i

Таким образом, умножение на i представляет собой вращение против часовой стрелки на четверть оборота. До умножения на i число 3 обозначается стрелкой длиною 3, направленной на восток, результатом умножения на i будет стрелка такой же длины, но направленная на север. Поворот на 90° также проливает свет на то, что на самом деле означает i2 = –1. Если мы умножим положительное число на i2, то стрелка, равная длине положительного числа, повернется на 180° в направлении с востока на запад, так как производится два поворота на 90° (по одному для каждой степени i), в итоге — на 180° (рис. 6).

Рис. 6. Результат умножения числа 3 на i2

Рис. 6. Результат умножения числа 3 на i2

В 1976 году мой коллега по Корнуолльскому университету Джон Хаббард попытался применить в задачах по динамике метод Ньютона, мощный алгоритм для поиска корней уравнений в комплексной плоскости. В соответствии с этим методом выбирается начальное значение (близкое к значению корня) и неоднократно производятся определенные вычисления. При этом на каждом последующем шаге используется значение, полученное на предыдущем. Этот метод позволяет быстро приблизиться к корням уравнения.

Хаббард заинтересовался множественными корнями. Какой из множественных корней можно найти методом Ньютона? Хаббард доказал, что из двух корней всегда будет найден тот, который наиболее близок к начальному значению. Однако при наличии трех и более корней его предыдущее доказательство не сработало. Тогда Хаббард провел так называемый численный эксперимент. Он запрограммировал компьютер на выполнение метода Ньютона, настроив устройство так, чтобы оно маркировало цветом миллионы различных начальных значений в соответствии с тем, к какому корню они приближались, и меняло интенсивность цвета в зависимости от скорости их приближения к корню.

До того, как Хаббард увидел результат, он предполагал, что к корням уравнения быстрее всего притянутся наиболее близкие к ним по значению, и это отобразится в виде ярких точек на сплошном цветовом пятне. Но вот границы между пятнами? О них он даже не думал. Компьютер выдал неожиданный результат.

Рис. 7. Фрактальная структура, полученная Хаббардом при решении уравнений методом Ньютона

Рис. 7. Фрактальная структура, полученная Хаббардом при решении уравнений методом Ньютона

Пограничная область между пятнами напоминала психоделические галлюцинации. Цвета в ней смешивались беспорядочно, соприкасаясь друг с другом в невероятно большом количестве точек. Они всегда располагались в трех направлениях. Другими словами, где бы ни появлялись два цвета, между ними всегда присутствовал третий. Расширение границ выявило наличие пятен внутри пятна.

Структура была фрактальной — сложной формы, внутренняя структура которой повторялась во все более мелких масштабах. Кроме того, вблизи границы царил хаос. Две точки могли вначале находиться очень близко друг к другу, какое-то время попрыгать рядышком, а потом разойтись к разным корням. Выбранный корень был так же непредсказуем, как выигрышные числа при игре в рулетку. Мелочи, крошечные, незаметные изменения в начальных условиях могли полностью изменить всю картину (подробнее см. Джеймс Глейк. Хаос. Создание новой науки).

10. Игра с квадратами

В начале IX века работавший в Багдаде математик Мухаммад ибн Муса аль-Хорезми написал фундаментальный учебник, в котором, в частности, рассмотрел решение квадратного уравнения x2 + 10x = 39. Идея аль-Хорезми состоит в том, чтобы представить каждое из слагаемых в уравнении геометрически. Первый член x2 — это площадь квадрата со стороной x.

Рис. 7а

Второй член 10x можно рассматривать как площадь прямоугольника 10 на х, или, более изощренно, как площадь двух равных прямоугольников, каждый размером 5 на х. (Разбиение прямоугольника на два меньших готовит почву для основного маневра, который последует далее, — получения полного квадрата.)

Рис. 7б

Прикрепите два новых прямоугольника к площади x2 для получения г-образной фигуры x2 + 10x:

Рис. 7в

В таком случае головоломка аль-Хорезми сводится к вопросу: если г-образная фигура занимает 39 квадратных единиц площади, то каким должен быть х? Изображение само по себе неуклонно подталкивает к следующему шагу. Посмотрите на пустой угол. Если бы он был заполнен, то г-образная фигура превратилась бы в идеальный квадрат. Учтем это наблюдение и заполним квадрат.

Рис. 7г

Помещение в пустой угол квадрата 5 х 5 добавляет 25 квадратных единиц к уже существующей площади х2 + 10х и в общей сложности дает x2 + 10x + 25. Это равносильно выражению общей площади в виде (x + 5)2, так как каждая сторона заполненной площади равна х + 5 единиц. Между тем, поскольку мы добавили 25 единиц к левой части уравнения, для сохранения баланса следует добавить 25 и к его правой части. Наше уравнение превращается в (х + 5)2 = 64. Это уравнение наверняка решаемо. Вычисляя квадратные корни из его обеих частей, получаем х + 5 = 8 и, следовательно, х = 3.

14. Конический заговор

Чтобы понять, что общего между эллипсом и параболой, представьте себе, как вы разрубаете конус тесаком для разделки мяса, как если бы нарезали салями косо со все более увеличивающимся углом наклона ножа. Если конус разрезать горизонтально, то его сечением будет окружность (рис. 8). Но если разрезать конус под небольшим наклоном, то его сечение из окружности превращается в эллипс. Чем больше угол наклона сечения, тем длиннее и тоньше пропорции эллипса. И при критическом угле, равном углу наклона образующей конуса, эллипс превращается в параболу.

Рис. 8. Сечения конуса

Рис. 8. Конические сечения

Парабола, в некотором смысле, замаскировалась под эллипс. Неудивительно, что и она обладает чудесной способностью эллипса фокусировать. Это свойство по наследству передается из поколения в поколение от эллипсов к параболам. На самом деле окружности, эллипсы и параболы — члены большой дружной семьи, известной под общим названием конические сечения — кривые, полученные путем разрезания поверхности конуса плоскостью. В семействе конических сечений есть еще одна сестра: если конус разрезается очень круто, под большим углом, чем угол наклона образующей конуса, то сечением станет кривая, называемая гиперболой. В отличие от всех остальных кривых, эта состоит из двух ветвей.

Эти четыре типа кривых покажутся еще более тесно связанными, если посмотреть на них с точки зрения алгебры. В алгебре они представлены в виде графиков уравнений второй степени:

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0,

где константы A, B, C, … определяют, будет ли графиком данной функции окружность, эллипс, парабола или гипербола.

В расчетах эти кривые появляются при исследовании траекторий объектов, перемещающихся под воздействием силы тяжести. Поэтому совсем не случайно планеты солнечной системы движутся по эллиптическим орбитам с одним из фокусов в центре Солнца; кометы проходят через солнечную систему по эллиптической, параболической или гиперболической траектории; а брошенный ребенком мяч летит по параболической дуге.

17. Перемены, в которые мы можем поверить

Исчисление функций и интегралов — это математика перемен. Она описывает все — от распространения эпидемий до зигзагов крученого мяча в бейсболе. Производная расскажет вам, как быстро что-то меняется, а интеграл — сколько это «что-то» накопит. В каждой области практической деятельности есть собственный вариант производной. Будет ли она предельным доходом или темпом роста, скоростью или наклоном — от любого ее названия по-прежнему веет холодком. К сожалению, многие студенты, прослушав курс дифференциального исчисления, приходят к гораздо более узкому толкованию производной как синонима наклона кривой.

В самое темное время зимы дни не только нещадно коротки, но и очень медленно растет продолжительность светового дня. Как только начинается весна, дни быстро удлиняются. Все это вполне объяснимо. Изменения наиболее вялые в крайних точках именно потому, что производная в них равна нулю. В этом случае процессы моментально успокаиваются (подробнее см. Управляйте по тенденциям, а не по событиям).

22. Новая нормальность

Один из главных уроков статистики: вещи кажутся безнадежно случайными и непредсказуемыми при рассмотрении их по отдельности, однако в совокупности в них обнаруживается закономерность и предсказуемость. Возможно, вы видели демонстрацию этого принципа в каком-нибудь научном музее. Типичный экспонат представляет собой приспособление под названием доска Гальтона, которая чем-то напоминает автомат для игры в пинбол, только без флипперов. Внутри его с равными интервалами располагаются ровные ряды штырьков (рис. 9).

Рис. 9. Демонстрация нормального распределения с помощью доски Гальтона

Рис. 9. Демонстрация нормального распределения с помощью доски Гальтона

Опыт начинается с того, что в верхнюю часть доски Гальтона запускаются сотни шариков. При падении они сталкиваются со штырьками и с равной вероятностью отскакивают то вправо, то влево, а затем распределяются внизу доски, попадая в отсеки одинаковой ширины. Высота столбика из шариков показывает, с какой вероятностью шарик может оказаться в данном месте. Большинство шариков размещаются примерно в середине, по бокам их уже меньше, и еще меньше — по краям. В общем, картина чрезвычайно предсказуема: шарики всегда образуют распределение в форме колокола, хотя предугадать, где окажется каждый отдельно взятый шарик, невозможно.

Каким образом отдельные случайности превращаются в общие закономерности? Но именно так действует случайность. В среднем столбике скопилось больше всего шариков потому, что, прежде чем скатиться вниз, многие из них совершат примерно одинаковое количество прыжков вправо и влево и в результате окажутся где-то посередине. Несколько одиноких шариков, расположившихся по краям, образуют хвосты распределения — это те шарики, которые при столкновении со штырьками отскакивали всегда в одном направлении. Такие отскоки маловероятны, поэтому по краям так мало шариков.

Идеализированной версией подобных колоколообразных кривых является то, что математики называют нормальным распределением. Это одно из важнейших понятий в статистике, имеющее теоретическое об-снование. Можно доказать, что нормальное распределение возникает при сложении большого количества мелких случайных факторов, причем каждый из них действует независимо от других. И многие события происходят именно таким образом (подробнее см. Нормальное распределение. Построение графика в Excel. Концепция шести сигм).

Нормальное распределение не такое уж вездесущее, как кажется. Возьмем, к примеру, распределение размеров городов в США. Вместо того чтобы скапливаться вокруг некоей средней величины колоколообразной кривой, подавляющее большинство городов имеют небольшой размер и, следовательно, скапливаются в левой части графика (рис. 10а). Хотя это не так очевидно, размеры городов подчиняются простому красивому распределению — если посмотреть на них в логарифмическом масштабе (рис. 10б).

Рис. 10. Распределение числа городов в США по количеству жителей

Рис. 10. Распределение числа городов в США по количеству жителей

Исходя из свойств логарифмов, нетрудно вывести, что исходная L-образная кривая представляет собой степенную зависимость, которая описывается функцией вида

y = c/xa

где x — население города, у — количество городов, имеющих такой размер, с — константа, а показатель степени а (показатель степенной зависимости) определяет отрицательный наклон прямой линии.

Этот пример демонстрирует важнейшее свойство распределений степенной зависимости: они имеют «тяжелые хвосты» по сравнению по крайней мере с маленькими «жидкими хвостиками» нормального распределения. Подобные большие хвосты хотя и редкость, но встречаются чаще в распределениях данных, чем обычные колоколообразные кривые (подробнее см. Крис Андерсон. Длинный хвост. Эффективная модель бизнеса в Интернете).

Подобное происходит с землетрясениями, пожарами и наводнениями, что усложняет страховым компаниям задачу управления рисками. Такая же математическая модель описывает число погибших в результате войн и террористических атак, а также другие, гораздо более мирные вещи, такие как количество слов в романе или число сексуальных партнеров у человека.

23. Шансы – это…

Чаще всего мое сердце колотится, когда я сталкиваюсь с темой условной вероятности, то есть вероятности того, что некое событие А произойдет при условии, что произойдет некое событие B. Это скользкое понятие легко спутать с вероятностью наступления B при условии A. Однако это разные вещи, и нужно быть очень внимательным при вычислении их вероятностей.

Многие мои студенты не использовали теорему Байеса, которой я их обучал, а решали задачу равноценным способом, казавшимся им более простым. В предложенных способах решения студенты прибегали к помощи интуиции, вместо того чтобы отвергать ее. Трюк состоял в том, чтобы мыслить натуральными числами, а не абстрактными категориями, такими как процентное соотношение, шансы или вероятности. Как только вы перестроите свое сознание, туман рассеется (подробнее см. Идеи Байеса для менеджеров).

Это главная идея захватывающей книги Понимать риски Герда Гигеренцера, когнитивного психолога из Института человеческого развития Макса Планка в Берлине. В одном из исследований Гигеренцер и его коллеги проводили опрос врачей в Германии и США. Врачам сообщали следующую информацию.

Вероятность того, что у одной из этих женщин рак груди, составляет 0,8%. Если же женщина действительно больна, то вероятность того, что ее маммография будет положительной, равна 90%. Тем не менее, если женщина здорова, вероятность того, что ее маммография окажется положительной, составляет 7%. Допустим, у женщины положительная маммография. Какова вероятность того, что она действительно больна раком груди?

Прежде чем читать далее, попробуйте дать свой ответ.

 

Правильный ответ: 9%. Гигеренцер утверждает, что анализ становится практически прозрачным, если перевести исходную информацию из процентного соотношения и вероятностей в натуральные числа возможных исходов.

У восьми женщин из тысячи рак груди, причем у семи из них положительная маммография. Среди оставшихся 992 женщин положительную маммографию будут иметь примерно 70. Возьмем женщин, обследование которых дало положительный результат. Сколько из них действительно больны раком груди?

Так как всего в группу риска попало 77 (7 + 70 = 77) женщин — но только семь из них на самом деле больны раком груди, — вероятность того, что у женщины рак груди, при условии положительной маммографии, составляет 7 из 77, или 1 из 11, то есть примерно 9% (подробнее см. Естественная частота против байесовского подхода).

Читать онлайн «Удовольствие от Х. Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мире» автора Строгац Стивен — RuLit

Эту книгу хорошо дополняют:

Кванты

Скотт Паттерсон

Brainiac

Кен Дженнингс

Moneyball

Майкл Льюис

Гибкое сознание

Кэрол Дуэк

Физика фондового рынка

Джеймс Уэзеролл

Steven Strogatz

The Joy of X

A Guided Tour of Math, from One to Infinity

Стивен Строгац

Удовольствие от Х

Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире

Информация от издательства

На русском языке публикуется впервые

Издано с разрешения Steven Strogatz, c/o Brockman, Inc.

Строгац, П.

Удовольствие от Х. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире / Стивен Строгац ; пер. с англ. — М. : Манн, Иванов и Фербер, 2014.

ISBN 978-500057-008-1

Эта книга способна в корне изменить ваше отношение к математике. Она состоит из коротких глав, в каждой из которых вы откроете для себя что-то новое. Вы узнаете насколько полезны числа для изучения окружающего мира, поймете, в чем прелесть геометрии, познакомитесь с изяществом интегральных исчислений, убедитесь в важности статистики и соприкоснетесь с бесконечностью. Автор объясняет фундаментальные математические идеи просто и элегантно, приводя блистательные примеры, понятные каждому.

Все права защищены.

Никакая часть данной книги не может быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских прав.

Правовую поддержку издательства обеспечивает юридическая фирма «Вегас-Лекс»

© Steven Strogatz, 2012 All rights reserved

© Перевод на русский язык, издание на русском языке, оформление. ООО «Манн, Иванов и Фербер», 2014

Предисловие

У меня есть друг, который, несмотря на свое ремесло (он — художник), страстно увлечен наукой. Всякий раз, когда мы собираемся вместе, он с энтузиазмом рассуждает о последних достижениях в области психологии или квантовой механики. Но стоит нам заговорить о математике — и он чувствует дрожь в коленках, что его сильно огорчает. Он жалуется, что эти странные математические символы не только не поддаются его пониманию, но порой он даже не знает, как их произносить.

На самом деле причина его неприятия математики гораздо глубже. Он никак не возьмет в толк, чем математики вообще занимаются и что имеют в виду, когда говорят, что данное доказательство изящно. Иногда мы шутим, что мне нужно просто сесть и начать его учить с самых азов, буквально с 1 + 1= 2, и углубиться в математику настолько, насколько он сможет.

И хотя эта затея кажется безумной, именно ее я и попытаюсь осуществить в данной книге. Я проведу вас по всем основным разделам науки, от арифметики до высшей математики, чтобы те, кто хотел получить второй шанс, наконец смогли им воспользоваться. И на сей раз вам не придется садиться за парту. Эта книга не сделает вас экспертом в математике. Зато поможет разобраться в том, что изучает данная дисциплина и почему она так увлекательна для тех, кто это понял.

Мы узнаем, как слэм-данки[1] Майкла Джордана могут помочь объяснить азы исчисления. Я покажу вам простой и потрясающий способ, как понять основополагающую теорему евклидовой геометрии — теорему Пифагора. Мы постараемся добраться до самой сути некоторых тайн жизни, больших и малых: убивал ли свою жену Джей Симпсон[2]; как перекладывать матрас, чтобы он прослужил максимально долго; сколько партнеров нужно сменить перед тем, как сыграть свадьбу, — и увидим, почему одни бесконечности больше, чем другие.

Математика повсюду, надо только научиться ее узнавать. Можно разглядеть синусоиду на спине зебры, услышать отголоски теорем Евклида в Декларации о независимости; да что там говорить, даже в сухих отчетах, предшествовавших Первой мировой войне, присутствуют отрицательные числа. Также можно увидеть, как на нашу сегодняшнюю жизнь влияют новые направления математики, например, когда мы ищем рестораны с помощью компьютера или пытаемся хотя бы понять, а еще лучше — пережить пугающие колебания фондового рынка.

По случайному, хотя и уместному для книги о числах совпадению, идея ее написания родилась в день, когда мне исполнилось пятьдесят. Дэвид Шипли, автор нескольких обзорных статей в New York Times, как раз пригласил меня (не зная о моем полувековом юбилее) на обед. Он спросил, не хочу ли я написать серию статей о математике для его читателей. Мне очень понравилась эта идея, и я был готов поделиться радостью от занятий математикой не только с моим любознательным другом-художником, но и с более широкой аудиторией.

Удовольствие от X. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире

Я всегда с осторожностью пишу рецензии на исторические романы. Часто бывает так: одно дело — прочитаешь книгу, провосхищаешься, оценивая в первую очередь художественный стиль и головокружительные повороты сюжетов, позже, перед началом написания отзыва, лезешь в специальную литературу и часто ловишь себя на мысли, что художественный вымысел писателя захватил тебя, но он часто совсем не соответствует действительности, найденной в исторических архивах. Автор приукрасил тот или иной момент или даже придумал от себя, чувствуя, как могло бы произойти данное событие.

Часто ты не до конца разбираешься во всех перипетиях исторической действительности, напишешь отзыв, выражая свое мнение по поводу событий, а тебе пишут в отзывах: «Эй, друг! А ты вообще читал очерки того-то, мемуары сего-то, доказательства, написанные там-то…», которые выражают совершенно противоположное мнение. Вот, в такие моменты я завидую читателям-историкам, которые как специалисты во всем разбираются, все четко подмечают, и разбирают произведение по полочкам, где «Борис прав», а где — нет.

К чему я это все пишу? А к тому, что я очень рад, что хоть где-то и я могу выступать аналогичным специалистом в своей области. Так как я — выпускник матфака, то для меня все популярные книги их этой области воспринимаются как «проверка на вшивость», как для себя, так и для творчества того или иного популяризатора науки.

Вспоминаю мой первый поход в институт на день открытых дверей. Тусняк молодых людей, не решивших еще куда будут поступать, эти массы ребят ходили на все собрания всех факультетов. К этой группе примкнул тогда и я, еще не до конца решивший, куда же поступать: на биохим или физмат. Мне безумно нравилась информатика и я уже мог программировать на фортране, с другой стороны уже прочитанные от корки до корки с огромным удовольствием два томика Популярной библиотеки химических элементов однозначно давали ответ, чем бы я мог заниматься в своей жизни. И тут одна маленькая фраза парня, уверенного в себе соседа по парте, уже убежденного для себя будущего студента физмата, перечеркнула все такие популярные книжки (которых, к сожалению, не попались мне в свое время под руку, и это немудрено, готовился я поначалу поступать на военного медика, но провалил медкомиссию, а мыслей стать именно математиком у меня, естественно, еще не было). А сказал он это так небрежно: «Зачем изучать математику и физику? Да, то ж все просто! Математику — чтобы тебя не обсчитали в магазине, когда ты покупаешь огромную корзину продуктов, а физику — чтобы ты мог рассчитать, каким образом донесешь домой эту увесистую корзину!» Наивно, не правда ли? Никакие популяризаторы науки мне не помогли выбрать специальность. Посмеявшись над мыслью соседа, я позже все же сопоставил свои возможности и еще не развившиеся интересы к пласту математической науки, и, понимая, что за компьютерами будущее, пошел подавать документы не на биофак, а на специальность «математика и информатика».

К чему я это все рассказываю? Да к тому, что, по моему мнению, ни одна популярная книга не сможет серьезно заразить, она может только немного заинтересовать, но если вы не находите в своей голове никакой мотивации углубиться в тот или иной предмет, область, проблему, никогда не заставишь вас продолжить общение в данном направлении.

Чем и кому может быть интересна эта книга Стивена Строгаца? Ответ очень прост. В двух словах я сформулировал бы его так. Эта книга — яркая авторская версия путеводителя по вводным занятиям и лекциям по математическим дисциплинам, сначала школьным (к вопросу о том, как бы я проводил первый урок по арифметике, тригонометрии, алгебре, стереометрии, началам анализа), а потом — и вузовским (математическая логика, теория вероятностей, теория чисел, математическая статистика, топология). Если бы молодым людям не только имелась возможность послушать в день открытых дверей вводную о том, что изучают студенты на факультете, но и посетить первые лекции каждого изучаемого на первом курсе математического предмета, то можно было бы получить приблизительно похожее представление о предмете «математика», как вы и получите, прочитав эту книгу.

Одно, конечно, не совсем серьезно, автор начинает эту книгу со школьных азов. Зачем это сделано? Может, чтобы можно было бы привлечь на свою сторону читателей, совсем ничего не знающих о математике, чтобы они смогли прочувствовать полезность школьных математических дисциплин. Наверное, это представлялось именно так. Но, на мой взгляд, этот прием оказался менее удачным.

Книга может быть также интересна еще не определившимся абитуриентам потенциальным студентам-математикам, их друзьям, возможно, родителям (что они понимали, куда «влезает» в будущем их чадо). Математикам-специалистам эта книга уже неинтересна, разве что, преподаватели могут взять на вооружение те или иные байки, собранные автором (а список литературы, использованный автором действительно солиден и более-менее современен для момента начала двадцать первого века), которые можно использовать на своих первых лекциях по соответствующим математическим дисциплинам или для разъяснения понимания «политики» математической «партии». Мне показалось, что читателям-не математикам эта книга интересной не станет и не заинтересует на дальнейшее соблазнение наукой о великой переменной Х, даже несмотря на хорошую и ненавязчивую стилистику книги.

Если говорить о критике материала, то мне явно не хватило тут глав о дискретной математике и ее роли в современных компьютерных науках, ведь если бы не большой прогресс в этой отрасли, не смогли бы так быстро развиться теория управления, теория безопасности данных, криптография и криптология, компьютерные сети и big data. Этот момент в книге не достаточно учтен. А так, если вас заинтересовала моя писанина — дерзайте, пробуйте читать, чтобы, возможно, впервые получить удовольствие от коварной переменной Х.

Читать книгу Удовольствие от X. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире Стивена Строгаца : онлайн чтение

Стивен Строгац
Удовольствие от X. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире

Steven Strogatz

The Joy of X

A Guided Tour of Math, from One to Infinity

Издано с разрешения Steven Strogatz, c/o Brockman, Inc.

© Steven Strogatz, 2012 All rights reserved

© Перевод на русский язык, издание на русском языке, оформление. ООО «Манн, Иванов и Фербер», 2014

Все права защищены. Никакая часть электронной версии этой книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для частного и публичного использования без письменного разрешения владельца авторских прав.

Правовую поддержку издательства обеспечивает юридическая фирма «Вегас-Лекс»

© Электронная версия книги подготовлена компанией ЛитРес

* * *
Эту книгу хорошо дополняют:

Кванты

Скотт Паттерсон

Brainiac

Кен Дженнингс

Moneyball

Майкл Льюис

Гибкое сознание

Кэрол Дуэк

Физика фондового рынка

Джеймс Уэзеролл

Предисловие

У меня есть друг, который, несмотря на свое ремесло (он – художник), страстно увлечен наукой. Всякий раз, когда мы собираемся вместе, он с энтузиазмом рассуждает о последних достижениях в области психологии или квантовой механики. Но стоит нам заговорить о математике – и он чувствует дрожь в коленках, что его сильно огорчает. Он жалуется, что эти странные математические символы не только не поддаются его пониманию, но порой он даже не знает, как их произносить.

На самом деле причина его неприятия математики гораздо глубже. Он никак не возьмет в толк, чем математики вообще занимаются и что имеют в виду, когда говорят, что данное доказательство изящно. Иногда мы шутим, что мне нужно просто сесть и начать его учить с самых азов, буквально с 1 + 1= 2, и углубиться в математику настолько, насколько он сможет.

И хотя эта затея кажется безумной, именно ее я и попытаюсь осуществить в данной книге. Я проведу вас по всем основным разделам науки, от арифметики до высшей математики, чтобы те, кто хотел получить второй шанс, наконец смогли им воспользоваться. И на сей раз вам не придется садиться за парту. Эта книга не сделает вас экспертом в математике. Зато поможет разобраться в том, что изучает данная дисциплина и почему она так увлекательна для тех, кто это понял.

Мы узнаем, как слэм-данки1
  Слэм-данк – вид броска в баскетболе, при котором игрок выпрыгивает вверх и одной или двумя руками бросает мяч сквозь кольцо сверху вниз. Прим. перев.

[Закрыть] Майкла Джордана могут помочь объяснить азы исчисления. Я покажу вам простой и потрясающий способ, как понять основополагающую теорему евклидовой геометрии – теорему Пифагора. Мы постараемся добраться до самой сути некоторых тайн жизни, больших и малых: убивал ли свою жену Джей Симпсон2
  Джей Симпсон – известный игрок в американский футбол. Сыграл роль детектива Нортберга в знаменитой трилогии «Голый пистолет». Был обвинен в убийстве бывшей жены и ее друга и оправдан, невзирая на улики. Прим. перев.

[Закрыть]; как перекладывать матрас, чтобы он прослужил максимально долго; сколько партнеров нужно сменить перед тем, как сыграть свадьбу, – и увидим, почему одни бесконечности больше, чем другие.

Математика повсюду, надо только научиться ее узнавать. Можно разглядеть синусоиду на спине зебры, услышать отголоски теорем Евклида в Декларации о независимости; да что там говорить, даже в сухих отчетах, предшествовавших Первой мировой войне, присутствуют отрицательные числа. Также можно увидеть, как на нашу сегодняшнюю жизнь влияют новые направления математики, например, когда мы ищем рестораны с помощью компьютера или пытаемся хотя бы понять, а еще лучше – пережить пугающие колебания фондового рынка.

По случайному, хотя и уместному для книги о числах совпадению, идея ее написания родилась в день, когда мне исполнилось пятьдесят. Дэвид Шипли, автор нескольких обзорных статей в New York Times, как раз пригласил меня (не зная о моем полувековом юбилее) на обед. Он спросил, не хочу ли я написать серию статей о математике для его читателей. Мне очень понравилась эта идея, и я был готов поделиться радостью от занятий математикой не только с моим любознательным другом-художником, но и с более широкой аудиторией.

Серия из 15 статей под общим названием «Основы математики» появилась в сети в конце января 2010 года. В ответ на их публикацию посыпались письма и комментарии от читателей всех возрастов, среди которых было много студентов и преподавателей. Встречались и просто любознательные люди, по тем или иным причинам «сбившиеся с пути» постижения математической науки; теперь же они почувствовали, что упустили что-то сто́ящее, и хотели бы попробовать еще раз. Особую радость мне доставляли благодарности от родителей за то, что они с моей помощью смогли объяснить математику своим детям, да и сами стали лучше ее понимать. Казалось, что даже мои коллеги и товарищи, горячие поклонники этой науки, получали удовольствие от чтения статей, за исключением тех моментов, когда они наперебой предлагали всевозможные рекомендации по улучшению моего детища.

Несмотря на расхожее мнение, в обществе наблюдается явный интерес к математике, хотя этому феномену и уделяют мало внимания. Мы только и слышим, что о страхе перед математикой, и тем не менее, многие с радостью бы попробовали разобраться в ней лучше. И стоит этому случиться – их уже будет трудно оторвать.

Данная книга познакомит вас с самыми сложными и передовыми идеями из мира математики. Главы небольшие, легко читаются и особо не зависят друг от друга. Среди них есть и вошедшие в ту, первую серию статей в New York Times. Так что как только почувствуете легкий математический голод, не раздумывая беритесь за следующую главу. Если захотите подробнее разобраться в заинтересовавшем вас вопросе, то в конце книги есть примечания с дополнительной информацией и рекомендациями, что еще об этом можно почитать.

Для удобства читателей, которые предпочитают пошаговый подход, я разбил материал на шесть частей в соответствии с традиционным порядком изучения тем.

Часть I «Числа» начинает наше путешествие с арифметики в детском саду и начальной школе. В ней показано, насколько полезными бывают числа и как они магически эффективны при описании окружающего мира.

Часть II «Соотношения» переводит внимание с самих чисел на соотношения между ними. Эти идеи лежат в основе алгебры и являются первыми инструментами для описания того, как одно влияет на другое, проявляя причинно-следственную связь самых разных вещей: спроса и предложения, стимула и реакции – словом, всех видов отношений, которые делают мир столь многогранным и богатым.

Часть III «Фигуры» повествует не о числах и символах, а о фигурах и пространстве – вотчине геометрии и тригонометрии. Эти темы, наряду с описанием всех обозримых объектов посредством форм, с помощью логических рассуждений и доказательств поднимают математику на новый уровень точности.

В части IV «Время перемен» мы рассмотрим исчисления – самое впечатляющее и многогранное направление математики. Исчисления позволяют предсказать траекторию движения планет, циклы приливов и отливов и дают возможность понять и описать все периодически меняющиеся процессы и явления во Вселенной и внутри нас. Важное место в этой части отведено изучению бесконечности, усмирение которой стало прорывом, позволившим вычислениям заработать. Вычисления помогли решить многие задачи, возникшие еще в античном мире, и это, в конечном счете, привело к революции в науке и современном мире.

Часть V «Многоликие данные» имеет дело с вероятностью, статистикой, сетями и обработкой данных – это все еще относительно молодые области, порожденные не всегда упорядоченными сторонами нашей жизни, такими как возможность и удача, неуверенность, риск, изменчивость, хаотичность, взаимозависимость. Используя подходящие средства математики и соответствующие типы данных, мы научимся обнаруживать закономерность в потоке случайностей.

В конце нашего путешествия в части VI «Границы возможного» мы приблизимся к пределам математического знания, к пограничной области между тем, что уже известно, и тем, что пока неуловимо и не познано. Мы вновь пройдемся по темам в уже знакомом нам порядке: числа, соотношения, фигуры, изменения и бесконечность, – но при этом рассмотрим каждую из них более глубоко, в ее современном воплощении.

Я надеюсь, что все идеи, описанные в этой книге, покажутся вам увлекательными и не раз заставят воскликнуть: «Ну и ну!» Но всегда с чего-то нужно начинать, поэтому давайте начнем с простого, но такого завораживающего действия, как счет.

Часть I. Числа
1. Основы чисел: сложение рыбок

Лучшую демонстрацию концепции чисел, которую я когда-либо видел (самое ясное и забавное объяснение того, что такое числа и зачем они нам нужны), я наблюдал в одном из выпусков популярной детской передачи «Улица Сезам», который называется «123: считаем вместе» (123 Counter with Me). Хамфри, добродушный, но недалекий персонаж с розовой шерсткой и зеленым носом, работающий в отеле «Мохнатые лапы», в обеденное время принимает по телефону заказ от пингвинов-постояльцев. Внимательно их выслушав, Хамфри передает заказ на кухню: «Рыбка, рыбка, рыбка, рыбка, рыбка, рыбка». Увиденное побуждает Эрни рассказать Хамфри о достоинствах числа шесть.


Дети узнаю́т, что числа – великолепный инструмент, который позволяет получить нужное количество порций быстрее. Вместо того чтобы повторять слово «рыбка» столько раз, сколько пингвинов в комнате, Хамфри может использовать более эффективный способ – посчитать и сразу назвать число шесть.

Впрочем, став старше, мы начинаем замечать у чисел и слабые стороны. Да, они прекрасно экономят время, но немалой платой за это становится их абстрактность. Число шесть более эфемерно, чем «шесть рыбок» – именно потому, что оно универсально. Шесть может быть чего угодно: шесть тарелок, шесть пингвинов, шесть раз произнесенное слово «рыбка». Число создает некую неявную общность между приведенными примерами.

Рассматриваемые таким образом числа начинают казаться мистическими. Они, очевидно, существуют в некоем идеальном мире Платона, где-то над действительностью, и в этом смысле больше походят на другие возвышенные понятия (например, истина и справедливость) и меньше – на обычные объекты повседневной жизни. Чем активнее вы о них думаете, тем дальше они удаляются от реальности. Как появились числа? Изобрели ли их люди? Или лишь обнаружили?

Еще один нюанс заключается в том, что числа (как и все математические идеи) живут своей жизнью1
  Чтобы ознакомиться с увлекательной идеей о том, что числа живут собственной жизнью, а математика может рассматриваться как одна из форм искусства, см. P. Lockhart, A Mathematician’s Lament (Bellevue Literary Press, 2009).
  Прим. ред.: В русском интернете много переводов эссе Локхарда «Плач математика». Вот один из них: http://mrega.ru/biblioteka/obrazovanie/130-plachmatematika.html.
  Здесь и далее сноски, оформленные в фигурные скобки, относятся к примечаниям автора.

[Закрыть]. Они нам неподвластны, хотя и присутствуют в наших умах. Даже определив, что мы под ними понимаем, мы не можем предсказать, как они себя поведут. Они подчиняются определенным законам и имеют определенные свойства, индивидуальные особенности и способы объединения друг с другом, и мы ничего не в силах с этим поделать, кроме как наблюдать и пытаться понять. В этом смысле они похожи на атомы и звезды: объекты, которые также существуют по своим (неподконтрольным нам) законам и находятся вне зоны нашего сознания.

Эта двойственная природа чисел – принадлежность к небесам и земным делам, – возможно, их самая парадоксальная черта и особенность, которая делает их настолько полезными. Это то, что имел в виду физик Юджин Вигнер, когда писал о неблагоразумной эффективности математики в естественных науках2
  Эта известная фраза взята из эссе E. Wigner The unreasonable effectiveness of mathematics in the natural sciences, Communications in Pure and Applied Mathematics, Vol. 13, No. 1, (February 1960), рр. 1–14. Онлайн-версия доступна на http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html.
  Для дальнейших размышлений на эту тему, а также о том, была математика изобретена или открыта, см. M. Livio, Is God a Mathematician? (Simon and Schuster, 2009) и R. W.Hamming, The unreasonable effectiveness of mathematics, American Mathematical Monthly, Vol. 87, No. 2 (February 1980).

[Закрыть].

Для того чтобы прояснить, что я имею в виду под жизнью чисел и их поведением, которое мы не можем контролировать, давайте вернемся в отель «Мохнатые лапы». Предположим, что Хамфри как раз собрался передать заказ, но тут ему неожиданно позвонили пингвины из другого номера и тоже попросили такое же количество рыбы. Сколько раз Хамфри должен прокричать слово «рыбка» после получения двух заказов? Если бы он ничего не узнал о числах, то ему пришлось бы кричать столько раз, сколько всего пингвинов в обеих комнатах. Или, используя числа, он мог объяснить повару, что ему нужно шесть рыбок для одного номера и шесть для другого. Но то, что ему действительно необходимо, представляет собой новую концепцию – сложение. Как только он его освоит, он с гордостью скажет, что ему нужно шесть плюс шесть (или, если он позер, двенадцать) рыбок.

Это такой же творческий процесс, как и тот, когда мы только придумывали числа. Так же как числа упрощают подсчет по сравнению с перечислением по одному, сложение упрощает вычисление любой суммы. При этом тот, кто производит подсчет, развивается как математик. По-научному эту мысль можно сформулировать так: использование правильных абстракций приводит к более глубокому проникновению в суть вопроса и большему могуществу при его решении.

Вскоре, возможно, даже Хамфри поймет, что теперь он всегда может производить подсчет.

Однако, несмотря на столь бесконечную перспективу, наше творчество всегда имеет какие-то ограничения. Мы можем решить, что подразумеваем под 6 и +, но как только это сделаем, результаты выражений, подобных 6 + 6, окажутся вне нашего контроля. Здесь логика не оставит нам выбора. В этом смысле математика всегда включает в себя как изобретение, так и открытие: мы изобретаем концепции, но открываем их последствия. Как станет ясно из следующих глав, в математике наша свобода заключается в возможности задавать вопросы и настойчиво искать на них ответы, однако не изобретая их самостоятельно.

2. Каменная арифметика

Как и любое явление в жизни, арифметика имеет две стороны: формальную и занимательную (или игровую).

Формальную часть мы изучали в школе. Там нам объясняли, как работать со столбцами чисел, складывая и вычитая их, как перелопачивать их при выполнении расчетов в электронных таблицах при заполнении налоговых деклараций и подготовки годовых отчетов. Эта сторона арифметики кажется многим важной с практической точки зрения, но совершенно безрадостной.

С занимательной стороной арифметики можно познакомиться только в процессе изучения высшей математики3
  Написанием данной главы я во многом обязан двум замечательным книгам: полемическому эссе P. Lockhart, A Mathematician’s Lament (Bellevue Literary Press, 2009) и роману Y. Ogawa, The Housekeeper and the Professor (Picador, 2009).
  Прим. ред.: Об эссе Локхарда «Плач математика» сказано в комментарии 1. Перевода романа Ёко Огавы на русский язык пока нет.

[Закрыть]. Тем не менее, она так же естественна, как и любопытство ребенка4
  Молодым читателям, которые хотят изучать числа и их структуры, см. H. M. Enzensberger, The Number Devil (Holt Paperbacks, 2000).
  Прим. ред.: Среди многочисленных русских книг о началах математики, нестандартных подходах к ее изучению, развитии математического творчества у детей и тому подобных тем, созвучных следующим главам книги, укажем пока следующие: Пухначев Ю., Попов Ю. Математика без формул. М.: АО «Столетие», 1995; Остер Г. Задачник. Ненаглядное пособие по математике. М.: АСТ, 2005; Рыжик В. И. 30 000 уроков математики: Книга для учителя. М.: Просвещение, 2003: Тучнин Н. П. Как задать вопрос? О математическом творчестве школьников. Ярославль: Верх. – Волж. кн. изд-во, 1989.

[Закрыть].

В эссе «Плач математика» Пол Локхарт предлагает изучать числа на более конкретных, чем обычно, примерах: он просит, чтобы мы представили их в виде некоторого количества камней. Например, число 6 соответствует вот такому набору камешков:


Вы вряд ли увидите тут что-то необычное. Так оно и есть. Пока мы не приступим к манипуляциям с числами, они выглядят примерно одинаково. Игра начинается, когда мы получаем задание.

Например, давайте посмотрим на наборы, в которых есть от 1 до 10 камней, и попробуем сложить из них квадраты. Это можно сделать только с двумя наборами – из 4 и 9 камней, поскольку 4 = 2 × 2 и 9 = 3 × 3. Мы получаем эти числа путем возведения в квадрат некоего другого числа (то есть раскладывая камни в виде квадрата).


Вот задача, имеющая большее число решений: надо узнать, из каких наборов получится прямоугольник, если разложить камни в два ряда с равным количеством элементов. Здесь подойдут наборы из 2, 4, 6, 8 или 10 камней; число должно быть четным. Если мы попробуем разложить в два ряда оставшиеся наборы с нечетным количеством камней, то у нас неизменно будет оставаться лишний камень.


Но не все потеряно для этих неудобных чисел! Если взять два таких набора, то лишние элементы найдут себе пару, и сумма получится четной: нечетное число + нечетное число = четное число.


Если распространить эти правила на числа, идущие после 10, и считать, что количество рядов в прямоугольнике может быть больше двух, то некоторые нечетные числа позволят сложить такие прямоугольники. Например, число 15 может составить прямоугольник 3 × 5.


Поэтому хотя 15, несомненно, нечетное число, оно является составным и может быть представлено в виде трех рядов по пять камней в каждом. Точно так же любая запись в таблице умножения дает собственную прямоугольную группу камешков.

Но некоторые числа, вроде 2, 3, 5 и 7, совершенно безнадежны. Из них нельзя выложить ничего, кроме как расположить их в виде простой линии (одного ряда). Эти странные упрямцы – знаменитые простые числа.

Итак, мы видим, что числа могут иметь причудливые структуры, которые наделяют их определенным характером. Но, чтобы представить весь спектр их поведения, надо отстраниться от отдельных чисел и понаблюдать за тем, что происходит во время их взаимодействия.

Например, вместо того чтобы сложить всего два нечетных числа, сложим все возможные последовательности нечетных чисел, начиная с 1:

1 + 3 = 4

1 + 3 + 5 = 9

1 + 3 + 5 + 7 = 16

1 + 3 + 5 + 7 + 9 = 25

Удивительно, но эти суммы всегда оказываются идеальными квадратами. (О том, что 4 и 9 можно представить в виде квадратов, мы уже говорили, а для 16 = 4 × 4 и 25 = 5 × 5 это тоже верно.) Быстрый подсчет показывает, что это правило справедливо и для бо́льших нечетных чисел и, видимо, стремится к бесконечности. Но какая же связь между нечетными числами с их «лишними» камнями и классически симметричными числами, образующими квадраты? Правильно располагая камешки, мы можем сделать ее очевидной, что является отличительной чертой изящного доказательства.5
  Превосходные, но более сложные примеры визуализации математических образов представлены в R. B. Nelsen, Proofs without Words (Mathematical Association of America, 1997).

[Закрыть]

Ключом к нему будет наблюдение, что нечетные числа можно представить в виде равносторонних уголков, последовательное наложение которых друг на друга образует квадрат!


Подобный способ рассуждений представлен еще в одной недавно вышедшей книге. В очаровательном романе Ёко Огавы The Housekeeper and the Professor («Домработница и профессор») рассказывается о проницательной, но необразованной молодой женщине и ее десятилетнем сыне. Женщину наняли ухаживать за пожилым математиком, у которого из-за полученной черепно-мозговой травмы в краткосрочной памяти сохраняется информация только о последних 80 минутах жизни. Потерявшись в настоящем, один в своем убогом коттедже, ничего не имея, кроме чисел, профессор пытается общаться с домработницей единственным известным ему способом: спрашивая о размере ее обуви или дате рождения и ведя с нею светскую беседу о ее расходах. Профессор также питает особую симпатию к сыну экономки, которого называет Рут (Root – корень), потому что у мальчика сверху плоская голова, и это напоминает ему обозначение в математике квадратного корня √.

Однажды профессор предлагает мальчику простую задачу – найти сумму всех чисел от 1 до 10. После того как Рут аккуратно складывает все числа между собой и возвращается с ответом (55), профессор просит его поискать более простой способ. Сможет ли он найти ответ без обычного сложения чисел? Рут пинает стул и кричит: «Это несправедливо!»

Мало-помалу домработница тоже втягивается в мир чисел и сама тайно пытается решить эту задачу. «Я не понимаю, почему так увлеклась детской задачкой, которая не имеет никакой практической пользы», – говорит она. «Сначала я хотела угодить профессору, но постепенно это занятие превратилось в сражение между мной и числами. Когда я просыпалась утром, уравнение уже ждало меня:

1 + 2 + 3 + … + 9 + 10 = 55,

и весь день следовало по пятам, будто было выжжено на сетчатке моих глаз, и его никак не получалось проигнорировать». Существует несколько путей решения задачи профессора (интересно, сколько сможете найти вы). Профессор сам предлагает способ рассуждений, который мы уже применили выше. Он интерпретирует сумму от 1 до 10 в виде треугольника из камешков, с одним камешком в первой строке, двумя во второй и так далее, до десяти камешков в десятом ряду.


Эта картинка дает четкое представление о негативном пространстве. Оказывается, оно заполнено только наполовину, что показывает направление творческого прорыва. Если скопировать треугольник из камешков, перевернуть его и соединить с уже существующим, то получится нечто весьма простое: прямоугольник с десятью рядами по 11 камешков в каждом, причем общее число камней составит 110.


Так как исходный треугольник – половина этого прямоугольника, то вычисляемая сумма чисел от 1 до 10 должна быть половиной 110, то есть 55.

Представление числа в виде группы камешков может показаться необычным, но на самом деле так же старо, как и сама математика. Слово «вычислять» (англ. calculate) отражает это наследие и происходит от латинского calculus, означающего «галька», которую римляне использовали при выполнении вычислений. Чтобы получать удовольствие от манипуляций с числами, не обязательно быть Эйнштейном (что по-немецки означает «один камень»), но, возможно, умение жонглировать камешками облегчит вам это занятие.

3. Враг моего врага

В начальной школе вычитание учат сразу после сложения. И в этом, безусловно, есть смысл: в обоих случаях применяется счет чисел, только при вычитании он выполняется в обратную сторону. Психологически действия тоже похожи: ребенок учится брать и давать примерно в одно и то же время. Сложение и вычитание всегда идут рука об руку. Если человек готов посчитать, сколько будет 23 + 9, то не сомневайтесь, он скоро ответит и на вопрос, сколько будет 23 – 9.

Но если углубиться в эту тему, то в отличие от сложения вычитание создает довольно неприятную проблему, поскольку в результате могут появиться отрицательные числа. Если я захочу взять у вас 6 булочек, а у вас их только 2, то в реальности у меня ничего не получится. Зато в уме я навешу на вас 4 отрицательные булочки, что бы это ни значило.

Вычитание заставляет нас расширить свое представление о числах. Отрицательные числа более абстрактны, чем положительные. Четыре отрицательные булочки не потрогаешь и не съешь, зато их можно представить. Самое интересное, что в реальном мире отрицательные числа тоже встречаются: долги, перерасход по кредитной карте, минусовые температуры зимой и обозначения подвальных уровней на крытых парковках.

Многие из нас пока еще не заключили мир с отрицательными числами. Как заметил мой коллега Энди, люди придумали всевозможные забавные мелкие уловки, чтобы обойти страшный отрицательный знак «минус». В отчетах паевых инвестиционных фондов потери (отрицательные числа) печатаются красным или заключаются в круглые скобки, чтобы минусы ни в коем случае не появились. В исторических книгах сказано, что Юлий Цезарь родился в 100 году до н. э., а не в –100 году. Подземные уровни парковки часто обозначаются как B1 и B2. Температура – одно из немногих исключений, когда люди действительно говорят, что она составляет –5 градусов, хотя и в этом случае многие предпочитают фразу «5 градусов ниже нуля». Видимо, в отрицательном знаке есть нечто отталкивающее и… негативное.

Возможно, самое неприятное заключается в том, что при перемножении двух отрицательных чисел получается положительное число. Поэтому позвольте привести доводы в защиту знака минус.

Как нам определить ценность такого выражения, как –1 × 3, где мы умножаем отрицательное число на положительное? Ну хорошо, так как 1 × 3 означает сумму 1 + 1 + 1, естественно представить –1 × 3 как (–1) + (–1) + (–1), что равняется –3. Это должно стать очевидным в примере с деньгами: если вы должны мне 1 доллар в неделю, то по истечении трех недель вы мне будете должны 3 доллара.

Отсюда уже недалеко до понимания, почему минус, умноженный на минус, дает плюс. А теперь взгляните на следующий ряд равенств:

– 1 × 3 = –3

– 1 × 2 = –2

– 1 × 1 = –1

– 1 × 0 = 0

– 1 × –1 =?

Посмотрите на числа в правой части равенств и удостоверьтесь в том, что это обычная прогрессия: –3, –2, –1, 0… На каждом шаге мы добавляем 1 к предыдущему числу. Таким образом, разве не логично, что следующим числом будет 1?

Это один аргумент в пользу того, почему (–1) × (–1) = 1. Привлекательность такого толкования заключается в том, что оно позволяет сохранить правила обычной арифметики – получается, что они верны как для положительных, так и для отрицательных чисел.

Но если вы бесчувственный прагматик, то, вероятно, будете удивлены, что у этих абстракций есть некие параллели в реальном мире. По общему признанию, жизнь иногда играет по различным правилам. В обычных этических построениях два заблуждения не приводят к истине. Более того, двойные отрицания не всегда равнозначны утверждению; они могут усилить отрицание, как в случае с «Я не могу получить никакого удовлетворения». (Действительно, в этом отношении язык может быть очень мудреным. Выдающийся британский философ и лингвист Дж. Остин из Оксфорда как-то в своей лекции заявил, что во многих языках двойное отрицание дает утверждение, но ни в одном дважды повторенное утверждение не дает отрицания. На что сидевший в аудитории философ из Колумбии Сидни Мордженбессер ехидно процедил: «Да-да».)

Тем не менее есть немало случаев, когда реальный мир действительно отражает правила умножения отрицательных чисел. Например, возбуждение одной нервной клетки может быть подавлено возбуждением второй нервной клетки. Если в этот момент возбуждение второй нервной клетки подавляется третьей нервной клеткой, то первая клетка может снова возбудиться. Косвенное воздействие третьей клетки на первую вызывает ее возбуждение. Таким образом, последовательность двух отрицаний приводит к утверждению. Подобные эффекты происходят и при регуляции генов: белок может включить ген, блокируя другую молекулу, которая подавляла этот отрезок молекулы ДНК.

Возможно, самую понятную параллель можно провести в социально-политической сфере. Как утверждает пословица, «враг моего врага – мой друг». Общеизвестно, что понятия вроде «друг моего врага», «враг моего друга» и тому подобные можно подставить в виде треугольника отношений.6
  Теория баланса впервые была предложена социальным психологом Фрицем Хайдером в 1946 году и с тех пор разрабатывалась и применялась теоретиками социальных сетей, политологами, антропологами, математиками и физиками. Ее исходные положения даны в F. Heider, Attitudes and cognitive organization, Journal of Psychology, Vol. 21 (1946), pp. 107–112, и F. Heider, The Psychology of Interpersonal Relations (John Wiley and Sons, 1958). Обзор по теории баланса с точки зрения социальных сетей см. S. Wasserman and K. Faust, Social Network Analysis (Cambridge University Press, 1994), chapter 6.

[Закрыть]

В углы треугольника помещают людей, компании или страны, а соединяющие их стороны показывают отношения между ними, которые могут быть как позитивными, или дружественными (обычно отображаются сплошными линиями), так и негативными, или враждебными (отображаются пунктирными линиями).


Социологи строят треугольники, подобные треугольнику слева, то есть считая отношения между объектами позитивными, так как разумно любить друзей ваших друзей. Точно так же треугольник справа, с двумя негативными и одной позитивной связью, считается сбалансированным, потому что такая комбинация не вызывает разногласий, даже несмотря на две стороны с негативными связями, поскольку ничто так не цементирует дружбу, как ненависть к одному и тому же человеку.

Конечно, треугольники могут быть выведены из состояния баланса. Это происходит в ситуации, когда есть три врага, причем двое из них относятся друг к другу менее враждебно и готовы объединиться, чтобы напасть на третьего.

Еще менее сбалансированным будет треугольник с единственной негативной связью. Например, предположим, что Кэрол хорошо относится и к Элис, и к Бобу, но Боб и Элис не любят друг друга. Возможно, они когда-то встречались и пережили тяжелое расставание, и теперь говорят друг о друге гадости лояльной к обоим Кэрол. Это создает психологическое напряжение между всеми тремя. Чтобы восстановить баланс, либо Элис и Боб должны урегулировать свои отношения, либо Кэрол должна принять чью-то сторону.


Во всех этих случаях логика баланса соответствует логике умножения. В сбалансированном треугольнике знак произведения двух любых сторон, положительный или отрицательный, всегда совпадает со знаком третьей стороны. В несбалансированном треугольнике это правило нарушается.

Не будем касаться вопросов о правдоподобии приведенных моделей, ибо здесь возникают интересные вопросы с чисто математическим привкусом. Например, в связной сети, где все друг друга знают, какое самое устойчивое состояние? Прежде всего это нирвана доброжелательности, где все отношения позитивные, а все треугольники в пределах сети сбалансированы. Однако существуют и другие устойчивые состояния. Например, устойчивое к конфликтам состояние, когда сеть раскололась на два враждебных лагеря (произвольных по величине и составу). Все члены одного лагеря хорошо относятся друг к другу, но враждебны к представителям другого лагеря. (Ничего не напоминает?) Возможно, еще более удивительно то, что эти полярные состояния являются единственно возможными столь же устойчивыми состояниями, как нирвана7
  Теорема, из которой следует, что сбалансированное состояние в полностью связной сети должно быть либо в виде одной нирваны для всех друзей, либо в виде двух взаимно антагонистических группировок, впервые была доказана в D. Cartwright and F. Harary, Structural balance: A generalization of Heider’s theory, Psychological Review, Vol. 63 (1956), pp. 277–293. Очень легко читаемая версия доказательства и простое введение в математику теории баланса дано двумя моими коллегами из Корнельского университета в работе D. Easley and J. Kleinberg, Networks, Crowds, and Markets (Cambridge University Press, 2010).

[Закрыть]. В частности, ни у какого трехстороннего раскола не может быть уравновешенных треугольников.

Ученые использовали этот метод для анализа союзов, сложившихся при подготовке к Первой мировой войне8
  Примеры и графические изображения альянсов до Первой мировой войны взяты из T. Antal, P. L. Krapivsky and S. Redner, Social balance on networks: The dynamics of friendship and enmity, Physica D, Vol. 224 (2006), pp. 130–136, доступной по адресу http://arxiv.org/abs/physics/0605183. Эта статья, написанная тремя физиками, распространяет теорию баланса на динамические структуры, тем самым расширяя ее за пределы ранних статических подходов. Исторические подробности европейских союзов и альянсов приведены в W. L. Langer, European Alliances and Alignments, 1871–1890, 2nd edition (Knopf, 1956) и B. E. Schmitt, Triple Alliance and Triple Entente (Henry Holt and Company, 1934).

[Закрыть]. Диаграммы, представленные ниже, показывают союзы между основными державами, участвовавшими в ней: Великобританией, Францией, Россией, Италией, Германией и Австро-Венгрией между 1872 и 1907 гг.




Первые пять конфигураций были несбалансированными, потому что каждая из них содержала по крайней мере один несбалансированный треугольник. Возникающие в результате разногласия подталкивали эти страны к изменению конфигурации, тем самым вызывая реверберацию в других частях сети. На последнем этапе Европа раскололась на два непримиримых антагонистских блока, придя к общему балансу, но оказавшись на грани войны.

Однако это не значит, что на основании данной теории можно делать прогнозы. Это не так. Подобный подход не позволяет объяснить все тонкости изменений в геополитике. Но некоторые из наблюдаемых нами явлений происходят в соответствии именно с примитивной логикой «враг моего врага» и отлично подпадают под умножение отрицательных чисел. Отделяя важное от незначительного, арифметика отрицательных чисел может помочь нам отыскать настоящие загадки.

Удовольствие или боль (2013) — IMDb

Списки пользователей

Связанные списки от пользователей IMDb

список из 29 наименований
создано 30 апреля 2016 г.

список из 45 наименований
создано 30 декабря 2017 г.

список из 35 наименований
создано 26 марта 2016 г.

список из 42 наименований
создано 16 сентября 2014 г.

список из 38 наименований
создано 20 сентября 2015 г.

.

Aloha Tube — бесплатный секс видео и потоковое порно видео


M.I.L.F. 2643588 видео
Мать663,213 видео
Подростки4,712,227 видео
Латина900,815 видео
зрелых
транссексуалы
Межрасовое833,853 видео
Большие Сиськи3,121,342 видео
тинка в любительском видео
Amateur4,948,803 Vids
Лесбиянки1,001,663 видео
русские371,450 видео
Дрочка1,028,048 видосы
POV1,478,559 видео
Красотки2,323,843 видео
Азиатки1 347 223 видео
Блондинки2,455,100 видео
Секс втроем820,280 видео
Кремпай771,077 видосы
Анал2,259,739 видео
Толстушки / Жирные732,041 видосы
домашнее577,806 видео
Первый анал
глотает сперму228,654 видео
Большой член2,111,348 видео
Женское доминирование276,200 видео
на улице966,862 видео
Группа 1 458 865 видео
Юная лесбиянка
зрелые в любительском видео
Мастурбация2,398,798 видео
Черное дерево 875 079 видео
Черный259,715 видео
Анал с тинкой794,758 видосы
Beauty704,694 видео
Сперма2,137,162 видео
Pornstar1,069,648 Vids
Задница2,662,250 види
Глубокая глотка403,958 видео
Подруга353,362 видео
Анальный секс в любительском видео
обнаженные378,557 видео
Анал со зрелыми
Нижнее белье375,120 видосы
двойное проникновение268,001 видео
БДСМ
Оргазм
Хардкор4,827,062 видео
Минет
скачет на члене
Студент128,952 видео
Брюнетки2,845,622 видео
Кончить в рот292,581 видео
Зрелые лесбиянки
Чулки497,521 видео
Дилдо483,509 видео
Подергивания155,356 видео
Анальный кремпай176,067 видео
Тугие284,264 видео
Униформа254,735 видео
Восточные 1 632 496 видео
Чудовищный член
Mmf57,673 видео
FFM72,202 видео
Европейские 429 298 видео
Бритая579,404 видосы
Сиськи4,857,487 видео
Фетиш2,278,533 видео
Секс вчетвером75,528 видео
аппликатура816,234 видео
Множественные оргазмы12,717 видео
Шлюха561,856 видео
Лизание729,476 видео
Лизание задницы233,409 видео
Игрушки1,522,331 видео
рабыня160,606 видео
покрытые спермой13,642 видео
Двойной минет107,384 видео
глотание спермы14,654 видео
Верховая езда378,264 видео
Сперма833,429 видео
Соло2,198,739 видео
Бритье7,925 видео
Несколько камшотов
Анальный фистинг
петух2,444,840 видео
из жопы в рот
тройное проникновение2,500 видео
Кончить на лицо775,379 видео
Пизда285,122 видео
двойной анал
анальные шарики2,578 видео
Растягивание задницы
анальные игрушки270,805 видео
двойной фистинг
Двойная киска
Дрочит в задницу113,470 видео
Обмен спермой
Двойной донг339 видео
Полный рот228,654 видео
.

Post A Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *